Protective Effect of Sucrose and Sodium Chloride for Lactococcus lactis during Sublethal and Lethal High-Pressure Treatments

Author:

Molina-Höppner Adriana1,Doster Wolfgang2,Vogel Rudi F.1,Gänzle Michael G.

Affiliation:

1. Lehrstuhl für Technische Mikrobiologie, Technische Universität München, D-85350 Freising

2. Lehrstuhl E13, Fakultät für Physik, Technische Universität München, 85748 Garching, Germany

Abstract

ABSTRACT The bactericidal effect of hydrostatic pressure is reduced when bacteria are suspended in media with high osmolarity. To elucidate mechanisms responsible for the baroprotective effect of ionic and nonionic solutes, Lactococcus lactis was treated with pressures ranging from 200 to 600 MPa in a low-osmolarity buffer or with buffer containing 0.5 M sucrose or 4 M NaCl. Pressure-treated cells were characterized in order to determine viability, the transmembrane difference in pH (ΔpH), and multiple-drug-resistance (MDR) transport activity. Furthermore, pressure effects on the intracellular pH and the fluidity of the membrane were determined during pressure treatment. In the presence of external sucrose and NaCl, high intracellular levels of sucrose and lactose, respectively, were accumulated by L. lactis ; 4 M NaCl and, to a lesser extent, 0.5 M sucrose provided protection against pressure-induced cell death. The transmembrane ΔpH was reversibly dissipated during pressure treatment in any buffer system. Sucrose but not NaCl prevented the irreversible inactivation of enzymes involved in pH homeostasis and MDR transport activity. In the presence 0.5 M sucrose or 4 M NaCl, the fluidity of the cytoplasmic membrane was maintained even at low temperatures and high pressure. These results indicate that disaccharides protect microorganisms against pressure-induced inactivation of vital cellular components. The protective effect of ionic solutes relies on the intracellular accumulation of compatible solutes as a response to the osmotic stress. Thus, ionic solutes provide only asymmetric protection, and baroprotection with ionic solutes requires higher concentrations of the osmolytes than of disaccharides.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3