Efficacy of Trovafloxacin against Penicillin-Susceptible and Multiresistant Strains of Streptococcus pneumoniae in a Mouse Pneumonia Model

Author:

Bédos Jean-Pierre1,Rieux Véronique1,Bauchet Jacqueline1,Muffat-Joly Martine1,Carbon Claude1,Azoulay-Dupuis Esther1

Affiliation:

1. Institut National de la Santé et de la Recherche Médicale, Unité 13, Hôpital Bichat-Claude Bernard, 75877 Paris Cedex 18, France

Abstract

ABSTRACT The increasing emergence of penicillin-resistant and multidrug-resistant strains of Streptococcus pneumoniae will create a serious therapeutic problem in coming years. Trovafloxacin is a novel naphthyridone quinolone with promising activity against S. pneumoniae , including penicillin-resistant strains (MIC for 90% of the isolates tested, 0.25 μg/ml). We compared its in vivo efficacy with that of other fluoroquinolones (ciprofloxacin, temafloxacin, and sparfloxacin) and a reference beta-lactam (amoxicillin) in a model of acute experimental pneumonia. Immunocompetent Swiss mice were infected by peroral tracheal delivery of a virulent, penicillin-susceptible strain (MIC, 0.03 μg/ml); leukopenic Swiss mice were infected with three poorly virulent, penicillin-resistant strains (MICs, 4 to 8 μg/ml) and a ciprofloxacin-resistant strain (MIC, 32 μg/ml). Treatments were started 6 h (immunocompetent mice) or 3 h (leukopenic mice) after infection. Doses ranging from 12.5 to 300 mg/kg were given at 12- or 8-h intervals for 3 days. Trovafloxacin (25 mg/kg) was the most effective agent in vivo against penicillin-susceptible and -resistant strains. Corresponding survival rates were 2- to 4-fold higher than with 50-mg/kg sparfloxacin or temafloxacin and 8- to 16-fold higher than with 100-mg/kg ciprofloxacin. The ratios of the area under the concentration-time curve to the MIC in serum and lung tissue were more favorable with trovafloxacin than with the other quinolones. Efficacy in vivo correlated with pharmacokinetic parameters. Trovafloxacin shows potential for the treatment of infections due to penicillin-susceptible and -resistant S. pneumoniae but appears to be ineffective against a ciprofloxacin-resistant strain.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3