Characterization of the Chromosomal Binding Sites andDimerization Partners of the Viral Oncoprotein Meq in Marek'sDisease Virus-Transformed TCells

Author:

Levy Alon M.12,Izumiya Yoshihiro12,Brunovskis Peter12,Xia Liang12,Parcells Mark S.3,Reddy Sanjay M.4,Lee Lucy4,Chen Hong-Wu12,Kung Hsing-Jien12

Affiliation:

1. Departmentof Biological Chemistry, School of Medicine, University of California, Davis, Davis, California 95616

2. UC Davis Cancer Center, Sacramento, California 95817

3. Center of Excellence for Poultry Science, Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas 72701

4. Avian Disease and Oncology Laboratory, USDA-ARS, East Lansing, Michigan 48823

Abstract

ABSTRACT Marek's disease virus (MDV) is an acute transforming alphaherpesvirus that causes T-cell lymphomas in chickens. We previously reported the identification of a putative oncogene, meq , that is encoded only by the oncogenic serotype of MDV. The gene product, Meq, is a latent protein that is consistently expressed in MDV-transformed lymphoblastoid cells and tumor cells. Meq has a bZIP (basic leucine zipper) structure resembling the family of Jun/Fos. The mechanism whereby Meq transforms T cells remains poorly understood. In this study, we explored the properties of Meq as a transcriptional factor. We analyzed Meq's dimerization partners and its target genes in MSB-1, an MDV-transformed T-cell line. By using in vitro assays, we first demonstrated Meq's potential to dimerize with a variety of bZIP proteins. We then identified c-Jun as the primary dimerization partner of Meq. Both are found to be colocalized in the nucleus and corecruited to promoters with AP-1 sequences. By using chromatin immunoprecipitation (ChIP), we scanned the entire MDV genome for Meq binding sites and found three regions that were enriched with Meq binding: the MDV lytic replication origin, the promoter for Meq, and the promoter for ICP4. Transactivation assays using the above promoters showed that Meq/Meq homodimers exhibited repression activity, whereas Meq/Jun heterodimers showed activation. Finally, we were able to show by ChIP that Meq is recruited to the interleukin-2 promoter in a region encompassing an AP-1 site. Thus, in addition to providing general knowledge about the transcriptional properties of Meq, our studies revealed for the first time the ability of Meq to interact with the latent MDV and host genomes. Our data suggest, therefore, a role for Meq in viral genome regulation during latency, in addition to its putative causal role in T-cell transformation.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3