Affiliation:
1. Department of Medical Microbiology, Nijmegen University Centre for Infectious Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
2. Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
Abstract
ABSTRACT
The need for accurate genotyping of human papillomavirus (HPV) infections is becoming increasingly important, since (i) the oncogenic potential among the high-risk HPV genotypes varies in the pathogenesis of cervical cancer, (ii) monitoring multivalent HPV vaccines is essential to investigate the efficiency of the vaccines, and (iii) genotyping is crucial in epidemiologic studies evaluating HPV infections worldwide. Various genotyping assays have been developed to meet this demand. Comparison of different studies that use various HPV genotyping tests is possible only after a performance assessment of the different assays. In the present study, the SPF
10
LiPA version 1 and the recently launched Roche Linear Array HPV genotyping assays are compared. A total of 573 liquid-based cytology samples were tested for the presence of HPV by a DNA enzyme immunoassay; 210 were found to be positive for HPV DNA and were evaluated using both genotyping assays (163 with normal cytology, 22 with atypical squamous cells of undetermined significance, 20 with mild/moderate dysplasia, and 5 with severe dysplasia). Comparison analysis was limited to the HPV genotype probes common to both assays. Of the 160 samples used for comparison analysis, 129 (80.6%) showed absolute agreement between the assays (concordant), 18 (11.2%) showed correspondence for some but not all genotypes detected on both strips (compatible), and the remaining 13 (8.2%) samples did not show any similarity between the tests (discordant). The overall intertest comparison agreement for all individually detectable genotypes was considered very good (κ value, 0.79). The genotyping assays were therefore highly comparable and reproducible.
Publisher
American Society for Microbiology
Reference37 articles.
1. The ALTS Group. 2000. Human papillomavirus testing for triage of women with cytologic evidence of low-grade squamous intraepithelial lesions: baseline data from a randomized trial. J. Natl. Cancer Inst.92:397-402.
2. Bachtiary, B., A. Obermair, B. Dreier, P. Birner, G. Breitenecker, T. H. Knocke, E. Selzer, and R. Potter. 2002. Impact of multiple HPV infection on response to treatment and survival in patients receiving radical radiotherapy for cervical cancer. Int. J. Cancer102:237-243.
3. Baseman, J. G., and L. A. Koutsky. 2005. The epidemiology of human papillomavirus infections. J. Clin. Virol.32(Suppl. 1):S16-S24.
4. Bleeker, M. C., C. J. Hogewoning, J. Berkhof, F. J. Voorhorst, A. T. Hesselink, P. M. van Diemen, A. J. van den Brule, P. J. Snijders, and C. J. Meijer. 2005. Concordance of specific human papillomavirus types in sex partners is more prevalent than would be expected by chance and is associated with increased viral loads. Clin. Infect. Dis.41:612-620.
5. Castle, P. E., M. Schiffman, R. D. Burk, S. Wacholder, A. Hildesheim, R. Herrero, M. C. Bratti, M. E. Sherman, and A. Lorincz. 2002. Restricted cross-reactivity of hybrid capture 2 with nononcogenic human papillomavirus types. Cancer Epidemiol. Biomark. Prev.11:1394-1399.
Cited by
138 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献