Specificity protein 1 (Sp1) and glucocorticoid receptor (GR) stimulate bovine alphaherpesvirus 1 (BoHV-1) replication and cooperatively transactivate the immediate early transcription unit 1 promoter

Author:

El-mayet Fouad S.12ORCID,Jones Clinton1ORCID

Affiliation:

1. Department of Veterinary Pathobiology, Oklahoma State University, College of Veterinary Medicine, Stillwater, Oklahoma, USA

2. Department of Virology, Benha University, Faculty of Veterinary Medicine, Benha, Egypt

Abstract

ABSTRACT Bovine alphaherpesvirus 1 (BoHV-1) infections cause respiratory tract disorders and suppress immune responses, which can culminate in bacterial pneumonia. Following acute infection, BoHV-1 establishes lifelong latency in sensory neurons present in trigeminal ganglia (TG) and unknown cells in pharyngeal tonsil. Latently infected calves consistently reactivate from latency after an intravenous injection of the synthetic corticosteroid dexamethasone (DEX), which mimics the effects of stress. The immediate early transcription unit 1 (IEtu1) promoter drives expression of infected cell protein 0 (bICP0) and bICP4, two key viral transcriptional regulators. The IEtu1 promoter contains two functional glucocorticoid receptor (GR) response elements (GREs), and this promoter is transactivated by GR, DEX, and certain Krüppel transcription factors that interact with GC-rich motifs, including consensus specificity protein 1 (Sp1) binding sites. Based on these observations, we hypothesized that Sp1 stimulates productive infection and transactivates key BoHV-1 promoters. DEX treatment of latently infected calves increased the number of Sp1 + TG neurons and cells in pharyngeal tonsil indicating that Sp1 expression is induced by stress. Silencing Sp1 protein expression with siRNA or mithramycin A, a drug that preferentially binds GC-rich DNA, significantly reduced BoHV-1 replication. Moreover, BoHV-1 infection of permissive cells increased Sp1 steady-state protein levels. In transient transfection studies, GR and Sp1 cooperatively transactivate IEtu1 promoter activity unless both GREs are mutated. Co-immunoprecipitation studies revealed that GR and Sp1 interact in mouse neuroblastoma cells (Neuro-2A) suggesting this interaction stimulates IEtu1 promoter activity. Collectively, these studies suggested that the cellular transcription factor Sp1 enhances productive infection and stress-induced BoHV-1 reactivation from latency. IMPORTANCE Following acute infection, bovine alphaherpesvirus 1 (BoHV-1) establishes lifelong latency in sensory neurons in trigeminal ganglia (TG) and pharyngeal tonsil. The synthetic corticosteroid dexamethasone consistently induces BoHV-1 reactivation from latency. The number of TG neurons and cells in pharyngeal tonsil expressing the cellular transcription factor specificity protein 1 (Sp1) protein increases during early stages of dexamethasone-induced reactivation from latency. Silencing Sp1 expression impairs BoHV-1 replication in permissive cells. Interestingly, mithramycin A, a neuroprotective antibiotic that preferentially binds GC-rich DNA, impairs Sp1 functions and reduces BoHV-1 replication suggesting that it is a potential antiviral drug. The glucocorticoid receptor (GR) and Sp1 cooperatively transactivate the BoHV-1 immediate early transcript unit 1 (IEtu1) promoter, which drives expression of infected cell protein 0 (bICP0) and bICP4. Mithramycin A also reduced Sp1- and GR-mediated transactivation of the IEtu1 promoter. These studies revealed that GR and Sp1 trigger viral gene expression and replication following stressful stimuli.

Funder

USDA | National Institute of Food and Agriculture

HHS | NIH | NIH Office of the Director

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3