Affiliation:
1. Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, New York
Abstract
ABSTRACT
The coactivator complexes TRAP/SMCC and PC2 represent two forms of Mediator. To further understand the implications of the heterogeneity of the cellular Mediator populations for regulation of RNA polymerase II (Pol II) transcription, we used a combination of affinity and conventional chromatographic methods. Our analysis revealed a spectrum of complexes, including some containing significant proportions of Pol II. Interestingly, the subunit composition of the Pol II-associated Mediator population resembled that of PC2 more closely than that of the larger TRAP/SMCC complex. In in vitro transcription assays reconstituted from homogeneous preparations of general transcription factors, Mediator-associated Pol II displayed a greater specific activity (relative to that of standard Pol II) in activator-independent (basal) transcription in addition to the previously described effects of Mediator on activator-dependent transcription. Purified PC2 complex also stimulated basal activity under these conditions. Immobilized template assays in which activator-recruited preinitiation complexes were allowed to undergo one cycle of transcription revealed partial disruption of Mediator that resulted in a PC2-like complex being retained in the scaffold. This result implies that PC2 could originate as a result of a normal cellular process. Our results are thus consistent with a dynamic nature of the Mediator complex and further extend the functional similarities between
Saccharomyces cerevisiae
and metazoan Mediator complexes.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献