Overlapping Roles for Homeodomain-Interacting Protein Kinases Hipk1 and Hipk2 in the Mediation of Cell Growth in Response to Morphogenetic and Genotoxic Signals

Author:

Isono Kyoichi1,Nemoto Kazumi1,Li Yuanyuan2,Takada Yuki1,Suzuki Rie1,Katsuki Motoya3,Nakagawara Akira2,Koseki Haruhiko1

Affiliation:

1. RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro, Tsurumi-ku, Yokohama 230-0045, Japan

2. Chiba Cancer Center Research Institute, 666-2 Nitona, Chuoh-ku, Chiba 260-8717, Japan

3. National Institute for Basic Biology, Okazaki National Research Institute, Okazaki, Japan

Abstract

ABSTRACT Homeodomain-interacting protein kinase 1 ( Hipk1 ), 2, and 3 genes encode evolutionarily conserved nuclear serine/threonine kinases, which were originally identified as interacting with homeodomain-containing proteins. Hipks have been repeatedly identified as interactors for a vast range of functional proteins, including not only transcriptional regulators and chromatin modifiers but also cytoplasmic signal transducers, transmembrane proteins, and the E2 component of SUMO ligase. Gain-of-function experiments using cultured cells indicate growth regulatory roles for Hipks on receipt of morphogenetic and genotoxic signals. However, Hipk1 and Hipk2 singly deficient mice were grossly normal, and this is expected to be due to a functional redundancy between Hipk1 and Hipk2. Therefore, we addressed the physiological roles of Hipk family proteins by using Hipk1 Hipk2 double mutants. Hipk1 Hipk2 double homozygotes are progressively lost between 9.5 and 12.5 days postcoitus and frequently fail to close the anterior neuropore and exhibit exencephaly. This is most likely due to defective proliferation in the neural fold and underlying paraxial mesoderm, particularly in the ventral region, which may be attributed to decreased responsiveness to Sonic hedgehog signals. The present study indicated the overlapping roles for Hipk1 and Hipk2 in mediating cell proliferation and apoptosis in response to morphogenetic and genotoxic signals during mouse development.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3