Sterol Regulatory Element Binding Protein Is a Principal Regulator of Anaerobic Gene Expression in Fission Yeast

Author:

Todd Bridget L.1,Stewart Emerson V.1,Burg John S.1,Hughes Adam L.1,Espenshade Peter J.1

Affiliation:

1. Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205

Abstract

ABSTRACT Fission yeast sterol regulatory element binding protein (SREBP), called Sre1p, functions in an oxygen-sensing pathway to allow adaptation to fluctuating oxygen concentrations. The Sre1p-Scp1p complex responds to oxygen-dependent sterol synthesis as an indirect measure of oxygen availability. To examine the role of Sre1p in anaerobic gene expression in Schizosaccharomyces pombe , we performed transcriptional profiling experiments after a shift to anaerobic conditions for 1.5 h. Of the 4,940 genes analyzed, expression levels of 521 (10.5%) and 686 (13.9%) genes were significantly increased and decreased, respectively, under anaerobic conditions. Sre1p controlled 68% of genes induced ≥2-fold. Oxygen-requiring biosynthetic pathways for ergosterol, heme, sphingolipid, and ubiquinone were primary targets of Sre1p. Induction of glycolytic genes and repression of mitochondrial oxidative phosphorylation genes largely did not require Sre1p. Using chromatin immunoprecipitation, we demonstrated that Sre1p acts directly at target gene promoters and stimulates its own transcription under anaerobic conditions. sre1 + promoter analysis identified two DNA elements that are both necessary and sufficient for oxygen-dependent, Sre1p-dependent transcription. Interestingly, these elements are homologous to sterol regulatory elements bound by mammalian SREBP, highlighting the evolutionary conservation between Sre1p and SREBP. We conclude that Sre1p is a principal activator of anaerobic gene expression, upregulating genes required for nonrespiratory oxygen consumption.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3