Impact of Endochitinase-Transformed White Spruce on Soil Fungal Biomass and Ectendomycorrhizal Symbiosis

Author:

Stefani Franck O. P.12,Tanguay Philippe2,Pelletier Gervais2,Piché Yves1,Hamelin Richard C.2

Affiliation:

1. Université Laval, Faculté de Foresterie, de Géographie et de Géomatique, Pavillon Abitibi-Price, 2405 Rue de la Terrasse, Québec, QC G1V 0A6, Canada

2. Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada

Abstract

ABSTRACT The impact of transgenic white spruce [ Picea glauca (Moench) Voss] containing the endochitinase gene ( ech 42) on soil fungal biomass and on the ectendomycorrhizal fungi Wilcoxina spp. was tested using a greenhouse trial. The measured level of endochitinase in roots of transgenic white spruce was up to 10 times higher than that in roots of nontransformed white spruce. The level of endochitinase in root exudates of three of four ech 42-transformed lines was significantly greater than that in controls. Analysis soil ergosterol showed that the amount of fungal biomass in soil samples from control white spruce was slightly larger than that in soil samples from ech 42-transformed white spruce. Nevertheless, the difference was not statistically significant. The rates of mycorrhizal colonization of transformed lines and controls were similar. Sequencing the internal transcribed spacer rRNA region revealed that the root tips were colonized by the ectendomycorrhizal fungi Wilcoxina spp. and the dark septate endophyte Phialocephala fortinii . Colonization of root tips by Wilcoxina spp. was monitored by real-time PCR to quantify the fungus present during the development of ectendomycorrhizal symbiosis in ech 42-transformed and control lines. The numbers of Wilcoxina molecules in the transformed lines and the controls were not significantly different ( P > 0.05, as determined by analysis of covariance), indicating that in spite of higher levels of endochitinase expression, mycorrhization was not inhibited. Our results indicate that the higher levels of chitinolytic activity in root exudates and root tissues from ech 42-transformed lines did not alter the soil fungal biomass or the development of ectendomycorrhizal symbiosis involving Wilcoxina spp.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3