Affiliation:
1. Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
Abstract
ABSTRACT
Numerous transcription accessory proteins cause alterations in chromatin structure that promote the progression of RNA polymerase II (Pol II) along open reading frames (ORFs). The
Saccharomyces cerevisiae
Paf1 complex colocalizes with actively transcribing Pol II and orchestrates modifications to the chromatin template during transcription elongation. To better understand the function of the Rtf1 subunit of the Paf1 complex, we created a series of sequential deletions along the length of the protein. Genetic and biochemical assays were performed on these mutants to identify residues required for the various activities of Rtf1. Our results establish that discrete nonoverlapping segments of Rtf1 are necessary for interaction with the ATP-dependent chromatin-remodeling protein Chd1, promoting covalent modification of histones H2B and H3, recruitment to active ORFs, and association with other Paf1 complex subunits. We observed transcription-related defects when regions of Rtf1 that mediate histone modification or association with active genes were deleted, but disruption of the physical association between Rtf1 and other Paf1 complex subunits caused only subtle mutant phenotypes. Together, our results indicate that Rtf1 influences transcription and chromatin structure through several independent functional domains and that Rtf1 may function independently of its association with other members of the Paf1 complex.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
93 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献