Affiliation:
1. Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
Abstract
ABSTRACT
We have established a cell-free
in vitro
system to study human papillomavirus type 16 (HPV16) assembly, a poorly understood process. L1/L2 capsomers, obtained from the disassembly of virus-like particles (VLPs), were incubated with nuclear extracts to provide access to the range of cellular proteins that would be available during assembly within the host cell. Incorporation of a reporter plasmid “pseudogenome” was dependent on the presence of both nuclear extract and ATP. Unexpectedly, L1/L2 VLPs that were not disassembled prior to incubation with a reassembly mixture containing nuclear extract also encapsidated a reporter plasmid. As with HPV pseudoviruses (PsV) generated intracellularly, infection by cell-free particles assembled
in vitro
required the presence of L2 and was susceptible to the same biochemical inhibitors, implying the cell-free assembled particles use the infectious pathway previously described for HPV16 produced in cell culture. Using biochemical and electron microscopy analyses, we observed that, in the presence of nuclear extract, intact VLPs partially disassemble, providing a mechanistic explanation to how the exogenous plasmid was packaged by these particles. Further, we provide evidence that capsids containing an <8-kb pseudogenome are resistant to the disassembly/reassembly reaction. Our results suggest a novel size discrimination mechanism for papillomavirus genome packaging in which particles undergo iterative rounds of disassembly/reassembly, seemingly sampling DNA until a suitably sized DNA is encountered, resulting in the formation of a stable virion structure.
IMPORTANCE
Little is known about papillomavirus assembly biology due to the difficulties in propagating virus
in vitro
. The cell-free assembly method established in this paper reveals a new mechanism for viral genome packaging and will provide a tractable system for further dissecting papillomavirus assembly. The knowledge gained will increase our understanding of virus-host interactions, help to identify new targets for antiviral therapy, and allow for the development of new gene delivery systems based on
in vitro
-generated papillomavirus vectors.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Reference64 articles.
1. The Biology and Life-Cycle of Human Papillomaviruses
2. Howley PM, Schiller JT, Lowy DR. 2013. Papillomaviruses. In Knipe DM, Howley PM, Cohen JI, Griffin DE, Lamb RA, Martin MA, Racaniello VR, Roizman B (ed), Fields virology, 6th ed. Lippincott Williams & Wilkins, Philadelphia, PA.
3. Efficient Intracellular Assembly of Papillomaviral Vectors
4. Maturation of Papillomavirus Capsids
5. Maturation of the human papillomavirus 16 capsid;Cardone G;mBio,2014
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献