Synergy between the Mos/mitogen-activated protein kinase pathway and loss of p53 function in transformation and chromosome instability

Author:

Fukasawa K1,Vande Woude G F1

Affiliation:

1. ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Maryland 21702-1201, USA.

Abstract

Constitutive activation of mitogen-activated protein kinase (MAPK) is a property common to many oncoproteins, including Mos, Ras, and Raf, and is essential for their transforming activities. We have shown that high levels of expression of the Mos/MAPK pathway in Swiss 3T3 fibroblast cause cells in S phase to undergo apoptosis, while cells in G1 irreversibly growth arrest. Interestingly, cells in G2 and M phases also arrest at a G1-like checkpoint after proceeding through mitosis. These cells fail to undergo cytokinesis and are binucleated. Thus, constitutive overexpression of Mos and MAPK cannot be tolerated, and fibroblasts transformed by Mos express only low levels of the mos oncogene product. Here, we show that p53 plays a key role in preventing oncogene-mediated activation of MAPK. In the absence of p53 (p53-/-), the growth arrest normally observed in wild-type p53 (p53+/+) mouse embryo fibroblasts (MEFs) is markedly reduced. The mos transformation efficiency in p53-/- MEFs is two to three orders of magnitude higher than that in p53+/+ cells, and p53-/- cells tolerate > 10-fold higher levels of both Mos and activated MAPK. Moreover, we show that, like Mos, both v-ras and v-raf oncogene products induce apoptosis in p53+/+ MEFs. These oncogenes also display a high transforming activity in p53-/- MEFs, as does a gain-of-function MAPK kinase mutant (MEK*). Thus, the p53-dependent checkpoint pathway is responsive to oncogene-mediated MAPK activation in inducing irreversible G1 growth arrest and apoptosis. Moreover, we show that the chromosome instability induced by the loss of p53 is greatly enhanced by the constitutive activation of the Mos/MAPK pathway.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3