High-resolution analysis of DNA replication domain organization across an R/G-band boundary

Author:

Strehl S1,LaSalle J M1,Lalande M1

Affiliation:

1. Genetics Division, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.

Abstract

Establishing how mammalian chromosome replication is regulated and how groups of replication origins are organized into replication bands will significantly increase our understanding of chromosome organization. Replication time bands in mammalian chromosomes show overall congruency with structural R- and G-banding patterns as revealed by different chromosome banding techniques. Thus, chromosome bands reflect variations in the longitudinal structure and function of the chromosome, but little is known about the structural basis of the metaphase chromosome banding pattern. At the microscopic level, both structural R and G bands and replication bands occupy discrete domains along chromosomes, suggesting separation by distinct boundaries. The purpose of this study was to determine replication timing differences encompassing a boundary between differentially replicating chromosomal bands. Using competitive PCR on replicated DNA from flow-sorted cell cycle fractions, we have analyzed the replication timing of markers spanning roughly 5 Mb of human chromosome 13q14.3/q21.1. This is only the second report of high-resolution analysis of replication timing differences across an R/G-band boundary. In contrast to previous work, however, we find that band boundaries are defined by a gradient in replication timing rather than by a sharp boundary separating R and G bands into functionally distinct chromatin compartments. These findings indicate that topographical band boundaries are not defined by specific sequences or structures.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3