Lack of gene- and strand-specific DNA repair in RNA polymerase III-transcribed human tRNA genes

Author:

Dammann R1,Pfeifer G P1

Affiliation:

1. Department of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California 91010, USA.

Abstract

UV light induces DNA lesions which are removed by nucleotide excision repair. Genes transcribed by RNA polymerase II are repaired faster than the flanking chromatin, and the transcribed strand is repaired faster than the coding strand. Transcription-coupled repair is not seen in RNA polymerase I-transcribed human rRNA genes. Since repair of genes transcribed by RNA polymerase III has not been analyzed before, we investigated DNA repair of tRNA genes after irradiation of human fibroblasts with UVC. We studied the repair of UV-induced cyclobutane pyrimidine dimers at nucleotide resolution by ligation-mediated PCR. A single-copy gene encoding selenocysteine tRNA, a tRNA valine gene, and their flanking sequences were analyzed. Protein-DNA footprinting showed that both genes were occupied by regulatory factors in vivo, and Northern blotting and nuclear run-on analysis of the tRNA indicated that these genes were actively transcribed. We found that both genes were repaired slower than RNA polymerase II-transcribed genes. No major difference between repair of the transcribed and the coding DNA strands was detected. Transcribed sequences of the tRNA genes were not repaired faster than flanking sequences. Indeed, several sequence positions in the 5' flanking region of the tRNA(Val) gene were repaired more efficiently than the gene itself. These results indicate that unlike RNA polymerase II, RNA polymerase III has no stimulatory effect on DNA repair. Since tRNA genes are covered by the regulatory factor TFIIIC and RNA polymerase III, these proteins may actually inhibit the DNA's accessibility to repair enzymes.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3