Postfertilization deadenylation of mRNAs in Xenopus laevis embryos is sufficient to cause their degradation at the blastula stage

Author:

Audic Y1,Omilli F1,Osborne H B1

Affiliation:

1. Centre National de la Recherche Scientifique, UPR 41, Université de Rennes I, France.

Abstract

Although the maternal Xenopus laevis Eg mRNAs are deadenylated after fertilization, they are not immediately degraded and they persist in the embryos as poly(A)- transcripts. The degradation of these RNAs is not detected until the blastula stage of development (6 to 7 h postfertilization). To understand the basis for this delay between deadenylation and degradation, it is necessary to identify the cis-acting element(s) required to trigger degradation in blastula stage embryos. To this end, several chimeric RNAs containing different portions of the 3' untranslated region of Eg2 mRNA were injected into two-cell X. laevis embryos. We observed that only the RNAs that contained the cis-acting elements that confer rapid deadenylation were subsequently degraded at the blastula stage. This suggested that deadenylation may be sufficient to trigger degradation. By injecting chimeric RNAs devoid of Eg sequence information, we further showed that only deadenylated RNAs were degraded in X. laevis embryos. Last, introduction of a functional cytoplasmic polyadenylation element into a poly(A)- RNA, thereby causing its polyadenylation after injection into embryos, protected the RNA from degradation. Hence, in X. laevis embryos, the postfertilization deadenylation of maternal Eg mRNAs is sufficient to cause the degradation of an mRNA, which, however, only becomes apparent at the blastula stage. Possible causes for this delay between deadenylation and degradation are discussed in the light of these results.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3