Affiliation:
1. Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia
Abstract
We describe a mutant (strain 704) of the obligate photoautotroph
Anacystis nidulans
which behaves like the wild type under continuous illumination but which in the dark rapidly loses viability, respires little, and incorporates label into ribonucleic acid and protein at rates considerably less than observed with the darkened wild type. Extracts of this mutant strain show no detectable 6-phosphogluconate dehydrogenase (EC 1.1.1.44) activity. Spontaneous revertants of mutant 704 were selected as survivors of prolonged incubation in darkness. Of 10 such strains examined, none had regained 6-phosphogluconate dehydrogenase activity, and all had lost detectable glucose-6-phosphate dehydrogenase (EC 1.1.1.49) activity. Although dark survival of these revertants paralleled that of the wild type, rates of dark endogenous respiration and incorporation of labeled precursors into ribonucleic acid were still very low, comparable to those observed with strain 704. These results are consistent with the following hypotheses concerning dark endogenous metabolism in unicellular blue-green bacteria. (i) Although the oxidative pentose phosphate cycle (hexose monophosphate shunt) may play a major role in endogenous metabolism in
A. nidulans
, as proposed by others, it is not the only pathway capable of providing energy for maintenance of viability in darkness. (ii) Much of the endogenous metabolic activity (respiration and macromolecular synthesis) observed in darkened cultures of wild-type
A. nidulans
is not required for survival alone, and must therefore serve other functions.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献