Comparative Evaluation of the Inhibitory Activities of a Series of Pyrimidinedione Congeners That Inhibit Human Immunodeficiency Virus Types 1 and 2

Author:

Buckheit Robert W.1,Hartman Tracy L.1,Watson Karen M.1,Chung Sun-Gan2,Cho Eui-Hwan2

Affiliation:

1. ImQuest BioSciences, Inc., 7340 Executive Way, Suite R, Frederick, Maryland 21704

2. Samjin Pharmaceutical Company, Ltd., Seoul, South Korea

Abstract

ABSTRACT Seventy-three analogs of SJ-3366 (1-(3-cyclopenten-1-ylmethyl)-5-ethyl-6-(3,5-dimethylbenzoyl)-2,4(1H,3H)-pyrimidinedione) were synthesized and comparatively evaluated for their ability to inhibit the replication of human immunodeficiency virus type 1 (HIV-1) and HIV-2 and for their ability to suppress virus entry and reverse transcription. These studies were performed to identify inhibitors with activity greater than that of the current lead molecule (SJ-3366) and to utilize structure-activity relationships (SAR) to define the chemical features of the pyrimidinedione congeners responsible for their efficacy, toxicity, and dual mechanism of action against HIV. The results of our SAR evaluations have demonstrated that the addition of the homocyclic moiety at the N-1 of the pyrimidinedione results in acquisition of the ability to inhibit virus entry and extends the range of action of the compounds to include HIV-2. In addition, the results demonstrate that analogs with a methyl linker between the homocyclic substitution and the N-1 of the pyrimidinedione had a greater number of highly active molecules than those analogs possessing ethyl linkers. Six molecules were identified with activity equivalent to or greater than that of SJ-3366, and five additional molecules with highly potent inhibition of reverse transcriptase and virus entry and possessing high efficacy against both HIV-1 and HIV-2 were identified. Six molecules exhibited significant inhibition of viruses with the highly problematic nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance engendering amino acid change K103N in the reverse transcriptase. These evaluations indicate that a new class of NNRTIs has been identified and that these NNRTIs possess highly potent inhibition of HIV-1 with an extended range of action, which now includes HIV-2.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3