The β-Catenin/T-Cell Factor/Lymphocyte Enhancer Factor Signaling Pathway Is Required for Normal and Stress-Induced Cardiac Hypertrophy

Author:

Chen Xin1,Shevtsov Sergei P.2,Hsich Eileen1,Cui Lei3,Haq Syed1,Aronovitz Mark1,Kerkelä Risto2,Molkentin Jeffery D.4,Liao Ronglih3,Salomon Robert N.5,Patten Richard1,Force Thomas12

Affiliation:

1. Molecular Cardiology Research Institute, Tufts-New England Medical Center and Tufts University School of Medicine

2. Center for Translational Medicine, Jefferson Medical College, Philadelphia, Pennsylvania

3. Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts

4. Department of Pediatrics, Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio

5. Department of Pathology, Tufts-New England Medical Center

Abstract

ABSTRACT In cells capable of entering the cell cycle, including cancer cells, β-catenin has been termed a master switch, driving proliferation over differentiation. However, its role as a transcriptional activator in terminally differentiated cells is relatively unknown. Herein we utilize conditional, cardiac-specific deletion of the β-catenin gene and cardiac-specific expression of a dominant inhibitory mutant of Lef-1 (Lef-1Δ20), one of the members of the T-cell factor/lymphocyte enhancer factor (Tcf/Lef) family of transcription factors that functions as a coactivator with β-catenin, to demonstrate that β-catenin/Tcf/Lef-dependent gene expression regulates both physiologic and pathological growth (hypertrophy) of the heart. Indeed, the profound nature of the growth impairment of the heart in the Lef-1Δ20 mouse, which leads to very early development of heart failure and premature death, suggests β-catenin/Tcf/Lef targets are dominant regulators of cardiomyocyte growth. Thus, our studies, employing complementary models in vivo, implicate β-catenin/Tcf/Lef signaling as an essential growth-regulatory pathway in terminally differentiated cells.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3