Clinical and Epidemiological Correlates of Genotypes within the Mycobacterium avium Complex Defined by Restriction and Sequence Analysis of hsp65

Author:

Smole Sandra C.123,McAleese Fionnuala3,Ngampasutadol Jutamas4,von Reyn C. Fordham5,Arbeit Robert D.143

Affiliation:

1. Departments of Medicine

2. Department of Epidemiology, Boston University School of Public Health

3. Infectious Diseases Section, Medical Service, VA Boston Healthcare System, Boston, Massachusetts 02130

4. Microbiology, Boston University School of Medicine

5. Department of Medicine, Dartmouth-Hitchcock Medical Center and Dartmouth Medical School, Hanover, New Hampshire 03756

Abstract

ABSTRACT Species identification of isolates of the Mycobacterium avium complex (MAC) remains a difficult task. Although M . avium and Mycobacterium intracellulare can be identified with expensive, commercially available probes, many MAC isolates remain unresolved, including those representing Mycobacterium lentiflavum as well as other potentially undefined species. PCR restriction analysis (PRA) of the hsp65 gene has been proposed as a rapid and inexpensive approach. We applied PRA to 278 MAC isolates, including 126 from blood of human immunodeficiency virus (HIV)-infected patients, 59 from sputum of HIV-negative patients with chronic obstructive pulmonary disease, 88 from environmental sources, and 5 pulmonary isolates from a different study. A total of 15 different PRA patterns were observed. For 27 representative isolates, a 441-bp fragment of the hsp65 gene was sequenced; based on 54 polymorphic sites, 18 different alleles were defined, including 12 alleles not previously reported. Species and phylogenetic relationships were more accurately defined by sequencing than by PRA or commercial probe. The distribution of PRA types and, by implication, phylogenetic lineages among blood isolates was significantly different from that for pulmonary and environmental isolates, suggesting that particular lineages have appreciably greater virulence and invasive potential.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3