Nonreciprocal Packaging of Human Immunodeficiency Virus Type 1 and Type 2 RNA: a Possible Role for the p2 Domain of Gag in RNA Encapsidation

Author:

Kaye Jane F.1,Lever Andrew M. L.1

Affiliation:

1. Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, United Kingdom

Abstract

ABSTRACT The ability of human immunodeficiency virus types 1 (HIV-1) and 2 (HIV-2) to cross-package each other’s RNA was investigated by cotransfecting helper virus constructs with vectors derived from both viruses from which the gag and pol sequences had been removed. HIV-1 was able to package both HIV-1 and HIV-2 vector RNA. The unspliced HIV-1 vector RNA was packaged preferentially over spliced RNA; however, unspliced and spliced HIV-2 vector RNA were packaged in proportion to their cytoplasmic concentrations. The HIV-2 helper virus was unable to package the HIV-1 vector RNA, indicating a nonreciprocal RNA packaging relationship between these two lentiviruses. Chimeric proviruses based on HIV-2 were constructed to identify the regions of the HIV-1 Gag protein conferring RNA-packaging specificity for the HIV-1 packaging signal. Two chimeric viruses were constructed in which domains within the HIV-2 gag gene were replaced by the corresponding domains in HIV-1, and the ability of the chimeric proviruses to encapsidate an HIV-1-based vector was studied. Wild-type HIV-2 was unable to package the HIV-1-based vector; however, replacement of the HIV-2 nucleocapsid by that of HIV-1 generated a virus with normal protein processing which could package the HIV-1-based vector. The chimeric viruses retained the ability to package HIV-2 genomic RNA, providing further evidence for a lack of reciprocity in RNA-packaging ability between the HIV-1 and HIV-2 nucleocapsid proteins. Inclusion of the p2 domain of HIV-1 Gag in the chimera significantly enhanced packaging.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3