Identification of the Respiratory Syncytial Virus Proteins Required for Formation and Passage of Helper-Dependent Infectious Particles

Author:

Teng Michael N.1,Collins Peter L.1

Affiliation:

1. Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-0720

Abstract

ABSTRACT We developed a system to identify the viral proteins required for the packaging and passage of human respiratory syncytial virus (RSV) by reconstructing these events with cDNA-encoded components. Plasmids encoding individual RSV proteins, each under the control of a T7 promoter, were cotransfected in various combinations together with a plasmid containing a minigenome into cells infected with a vaccinia virus recombinant expressing T7 RNA polymerase. Supernatants from these cells were passaged onto fresh cells which were then superinfected with RSV. Functional reconstitution of RSV-specific packaging and passage was detected by expression of the reporter gene carried on the minigenome. As expected, the four nucleocapsid proteins N, P, L, and M2-1 failed to direct packaging and passage of the minigenome. Passage was achieved by further addition of plasmids expressing three membrane-associated proteins, M, G, and F; inclusion of the fourth envelope- associated protein, SH, did not alter passage efficiency. Passage was reduced 10- to 20-fold by omission of G and was abrogated by omission of either M or F. Coexpression of the nonstructural NS1 or NS2 protein had little effect on packaging and passage except through indirect effects on RNA synthesis in the initial transfection. The M2-1 transcription elongation factor was not required for the generation of passage-competent particles. However, addition of increasing quantities of M2-1 to the transfection mediated a dose-dependent inhibition of passage which was alleviated by coexpression of the putative negative regulatory factor M2-2. Omission of the L plasmid reduced passage 10- to 20-fold, most likely due to reduced availability of encapsidated minigenomes for packaging. However, the residual level of passage indicated that neither L protein nor the process of RSV-specific RNA synthesis is required for the production and passage of particles. Omission of N or P from the transfection abrogated passage. Thus, the minimum RSV protein requirements for packaging and passaging a minigenome are N, P, M, and F, although the efficiency is greatly increased by addition of L and G.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3