Exclusive and Persistent Use of the Entry Coreceptor CXCR4 by Human Immunodeficiency Virus Type 1 from a Subject Homozygous for CCR5 Δ32

Author:

Michael Nelson L.1,Nelson Julie A. E.2,KewalRamani Vineet N.3,Chang George4,O’Brien Stephen J.5,Mascola John R.16,Volsky Barbara3,Louder Mark4,White Gilbert C.7,Littman Dan R.38,Swanstrom Ronald29,O’Brien Thomas R.10

Affiliation:

1. Division of Retrovirology, Walter Reed Army Institute of Research,1

2. Lineberger Comprehensive Cancer Center,2

3. Skirball Institute3 and

4. The Henry M. Jackson Foundation for the Advancement of Military Medicine,4 and

5. Laboratory of Genomic Diversity5 and

6. Department of Infectious Diseases, Naval Medical Research Institute, Bethesda,6Maryland;

7. Division of Hematology and Oncology,7 and

8. Howard Hughes Medical Institute,8 New York University Medical Center, New York, New York

9. Department of Biochemistry and Biophysics,9 University of North Carolina, Chapel Hill, North Carolina; and

10. Viral Epidemiology Branch,10 National Cancer Institute, Rockville, and

Abstract

ABSTRACT Individuals who are homozygous for the 32-bp deletion in the gene coding for the chemokine receptor and major human immunodeficiency virus type 1 (HIV-1) coreceptor CCR5 ( CCR5 −/−) lack functional cell surface CCR5 molecules and are relatively resistant to HIV-1 infection. HIV-1 infection in CCR5 −/− individuals, although rare, has been increasingly documented. We now report that the viral quasispecies from one such individual throughout disease is homogenous, T cell line tropic, and phenotypically syncytium inducing (SI); exclusively uses CXCR4; and replicates well in CCR5 −/− primary T cells. The recently discovered coreceptors BOB and Bonzo are not used. Although early and persistent SI variants have been described in longitudinal studies, this is the first demonstration of exclusive and persistent CXCR4 usage. With the caveat that the earliest viruses available from this subject were from approximately 4 years following primary infection, these data suggest that HIV-1 infection can be mediated and persistently maintained by viruses which exclusively utilize CXCR4. The lack of evolution toward the available minor coreceptors in this subject underscores the dominant biological roles of the major coreceptors CCR5 and CXCR4. This and two similar subjects (R. Biti, R. Ffrench, J. Young, B. Bennetts, G. Stewart, and T. Liang, Nat. Med. 3:252–253, 1997; I. Theodoreu, L. Meyer, M. Magierowska, C. Katlama, and C. Rouzioux, Lancet 349:1219–1220, 1997) showed relatively rapid CD4 + T-cell declines despite average or low initial viral RNA load. Since viruses which use CXCR4 exclusively cannot infect macrophages, these data have implications for the relative infection of the T-cell compartment versus the macrophage compartment in vivo and for the development of CCR5-based therapeutics.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3