Removal of Divalent Cations Induces Structural Transitions in Red Clover Necrotic Mosaic Virus , Revealing a Potential Mechanism for RNA Release

Author:

Sherman Michael B.1,Guenther Richard H.2,Tama Florence3,Sit Tim L.2,Brooks Charles L.3,Mikhailov Albert M.4,Orlova Elena V.5,Baker Timothy S.1,Lommel Steven A.2

Affiliation:

1. Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907

2. Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695

3. Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037

4. Institute of Crystallography, Russian Academy of Sciences, Moscow 119333, Russia

5. School of Crystallography, Birkbeck College, London WC1E 7HX, United Kingdom

Abstract

ABSTRACT The structure of Red clover necrotic mosaic virus (RCNMV), an icosahedral plant virus, was resolved to 8.5 Å by cryoelectron microscopy. The virion capsid has prominent surface protrusions and subunits with a clearly defined shell and protruding domains. The structures of both the individual capsid protein (CP) subunits and the entire virion capsid are consistent with other species in the Tombusviridae family. Within the RCNMV capsid, there is a clearly defined inner cage formed by complexes of genomic RNA and the amino termini of CP subunits. An RCNMV virion has approximately 390 ± 30 Ca 2+ ions bound to the capsid and 420 ± 25 Mg 2+ ions thought to be in the interior of the capsid. Depletion of both Ca 2+ and Mg 2+ ions from RCNMV leads to significant structural changes, including (i) formation of 11- to 13-Å-diameter channels that extend through the capsid and (ii) significant reorganization within the interior of the capsid. Genomic RNA within native capsids containing both Ca 2+ and Mg 2+ ions is extremely resistant to nucleases, but depletion of both of these cations results in nuclease sensitivity, as measured by a significant reduction in RCNMV infectivity. These results indicate that divalent cations play a central role in capsid dynamics and suggest a mechanism for the release of viral RNA in low-divalent-cation environments such as those found within the cytoplasm of a cell.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3