Discovery of Itraconazole with Broad-SpectrumIn VitroAntienterovirus Activity That Targets Nonstructural Protein 3A

Author:

Gao Qianqian,Yuan Shilin,Zhang Chao,Wang Ying,Wang Yizhuo,He Guimei,Zhang Shuyi,Altmeyer Ralf,Zou Gang

Abstract

ABSTRACTThere is currently no approved antiviral therapy for the prophylaxis or treatment of enterovirus infections, which remain a substantial threat to public health. To discover inhibitors that can be immediately repurposed for treatment of enterovirus infections, we developed a high-throughput screening assay that measures the cytopathic effect induced by enterovirus 71 (EV71) to screen an FDA-approved drug library. Itraconazole (ITZ), a triazole antifungal agent, was identified as an effective inhibitor of EV71 replication in the low-micromolar range (50% effective concentrations [EC50s], 1.15 μM). Besides EV71, the compound also inhibited other enteroviruses, including coxsackievirus A16, coxsackievirus B3, poliovirus 1, and enterovirus 68. Study of the mechanism of action by time-of-addition assay and transient-replicon assay revealed that ITZ targeted a step involved in RNA replication or polyprotein processing. We found that the mutations (G5213U and U5286C) conferring the resistance to the compound were in nonstructural protein 3A, and we confirmed the target amino acid substitutions (3A V51L and 3A V75A) using a reverse genetic approach. Interestingly, posaconazole, a new oral azole with a molecular structure similar to that of ITZ, also exhibited anti-EV71 activity. Moreover, ITZ-resistant viruses do not exhibit cross-resistance to posaconazole or the enviroxime-like compound GW5074, which also targets the 3A region, indicating that they may target a specific site(s) in viral genome. Although the protective activity of ITZ or posaconazole (alone or in combination with other antivirals) remains to be assessed in animal models, our findings may represent an opportunity to develop therapeutic interventions for enterovirus infection.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3