Human Immunoglobulin G2 (IgG2) and IgG4, but Not IgG1 or IgG3, Protect Mice against Cryptococcus neoformans Infection

Author:

Beenhouwer David O.123,Yoo Esther M.3,Lai Chun-Wei3,Rocha Miguel A.1,Morrison Sherie L.3

Affiliation:

1. Division of Infectious Diseases, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073

2. Department of Medicine, David Geffen School of Medicine

3. Department of Microbiology, Immunology and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles, California 90095

Abstract

ABSTRACT The encapsulated yeast Cryptococcus neoformans is a significant cause of meningitis and death in patients with AIDS. Some murine monoclonal antibodies (MAbs) against the glucuronoxylomannan (GXM) component of the C. neoformans capsular polysaccharide can prolong the lives of infected mice, while others have no effect or can even shorten survival. To date, no one has systematically compared the efficacies of antibodies with the same variable regions and different human constant regions with their unique combination of effector functions in providing protection against murine C. neoformans infection. In the present study, we examined the efficacies of anti-GXM MAbs of the four human immunoglobulin G (IgG) subclasses, which have identical variable regions but differ in their capacities to bind the three types of Fc receptors for IgG (FcγR), their abilities to activate complement, and their half-lives. IgG2 and IgG4 anti-GXM prolonged the lives of infected BALB/c mice, IgG3 anti-GXM did not affect animal survival, while mice treated with IgG1 anti-GXM died earlier than mice treated with phosphate-buffered saline or irrelevant isotype-matched MAbs. All MAbs decreased serum GXM in infected animals. Effector pathways traditionally believed to be important in defense against microbes, such as opsonophagocytosis and complement binding, negatively correlated with antibody efficacy. It is generally accepted that human IgG1 has the most favorable combination of effector functions for therapeutic use against infections. Therefore, our findings have significant implications for humanization of the mouse IgG1 currently in clinical trials for cryptococcal meningitis and for the design of antibody therapeutics to treat other infectious diseases as well.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3