Author:
Wiebauer K,Herrero J J,Filipowicz W
Abstract
The report that human growth hormone pre-mRNA is not processed in transgenic plant tissues (A. Barta, K. Sommergruber, D. Thompson, K. Hartmuth, M.A. Matzke, and A.J.M. Matzke, Plant Mol. Biol. 6:347-357, 1986) has suggested that differences in mRNA splicing processes exist between plants and animals. To gain more information about the specificity of plant pre-mRNA processing, we have compared the splicing of the soybean leghemoglobin pre-mRNA with that of the human beta-globin pre-mRNA in transfected plant (Orychophragmus violaceus and Nicotiana tabacum) protoplasts and mammalian (HeLa) cells. Of the three introns of leghemoglobin pre-mRNA, only intron 2 was correctly and efficiently processed in HeLa cells. The 5' splice sites of the remaining two introns were faithfully recognized, but correct processing of the 3' sites took place only rarely (intron 1) or not at all (intron 3); cryptic 3' splice sites were used instead. While the first intron in human beta-globin pre-mRNA was not spliced in transfected plant protoplasts, intron 2 processing occurred at a low level, indicating that some mammalian introns can be recognized by the plant intron-splicing machinery. However, excision of intron 2 proved to be incorrect, involving the authentic 5' splice site and a cryptic 3' splice site. Our results indicate that the mechanism of 3'-splice-site selection during intron excision differs between plants and animals. This conclusion is supported by analysis of the 3'-splice-site consensus sequences in animal and plant introns which revealed that polypyrimidine tracts, characteristic of animal introns, are not present in plant pre-mRNAs. It is proposed that an elevated AU content of plant introns is important for their processing.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
101 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献