Affiliation:
1. MGC-Department of Radiation Genetics and Chemical Mutagenesis, Leiden University, The Netherlands.
Abstract
Two of the hallmarks of Cockayne's syndrome (CS) are the hypersensitivity of cells to UV light and the lack of recovery of the ability to synthesize RNA following exposure of cells to UV light, in spite of the normal repair capacity at the overall genome level. The prolonged repressed RNA synthesis has been attributed to a defect in transcription-coupled repair, resulting in slow removal of DNA lesions from the transcribed strand of active genes. This model predicts that the sensitivity of CS cells to another DNA-damaging agent, i.e., the UV-mimetic agent N-acetoxy-2-acetylaminofluorene (NA-AAF), should also be associated with a lack of resumption of RNA synthesis and defective transcription-coupled repair of NA-AAF-induced DNA adducts. We tested this by measuring the rate of excision of DNA adducts in the adenosine deaminase gene of primary normal human fibroblasts and two CS (complementation group A and B) fibroblast strains. High-performance liquid chromatography analysis of DNA adducts revealed that N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-C8-AF) was the main adduct induced by NA-AAF in both normal and CS cells. No differences were found between normal and CS cells with respect to induction of this lesion either at the level of the genome overall or at the gene level. Moreover, repair of dG-C8-AF in the active adenosine deaminase gene occurred at similar rates and without strand specificity in normal and CS cells, indicating that transcription-coupled repair does not contribute significantly to repair of dG-C8-AF in active genes. Yet CS cells are threefold more sensitive to NA-AAF than are normal cells and are unable to recover the ability to synthesize RNA. Our data rule out defective transcription-coupled repair as the cause of the increased sensitivity of CS cells to DNA-damaging agents and suggest that the cellular sensitivity and the prolonged repressed RNA synthesis are primarily due to a transcription defect. We hypothesize that upon treatment of cells with either UV or NA-AAF, the basal transcription factor TFIIH becomes involved in nucleotide excision repair and that the CS gene products are involved in the conversion of TFIIH back to the transcription function. In this view, the CS proteins act as repair-transcription uncoupling factors. If the uncoupling process is defective, RNA synthesis will stay repressed, causing cellular sensitivity. Since transcription is essential for transcription-coupled repair, the CS defect will affect those lesions whose repair is predominantly transcription coupled, i.e., UV-induced cyclobutane pyrimidine dimers.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献