Rapamycin Antifungal Action Is Mediated via Conserved Complexes with FKBP12 and TOR Kinase Homologs in Cryptococcus neoformans

Author:

Cruz M. Cristina1,Cavallo Lora M.12,Görlach Jenifer M.1,Cox Gary3,Perfect John R.43,Cardenas Maria E.1,Heitman Joseph15432

Affiliation:

1. Departments of Genetics,1

2. Howard Hughes Medical Institute, 2 Duke University Medical Center, Durham, North Carolina 27710

3. Medicine, 3 and

4. Microbiology, 4 and

5. Pharmacology and Cancer Biology,5

Abstract

ABSTRACT Cryptococcus neoformans is a fungal pathogen that causes meningitis in patients immunocompromised by AIDS, chemotherapy, organ transplantation, or high-dose steroids. Current antifungal drug therapies are limited and suffer from toxic side effects and drug resistance. Here, we defined the targets and mechanisms of antifungal action of the immunosuppressant rapamycin in C. neoformans . In the yeast Saccharomyces cerevisiae and in T cells, rapamycin forms complexes with the FKBP12 prolyl isomerase that block cell cycle progression by inhibiting the TOR kinases. We identified the gene encoding a C. neoformans TOR1 homolog. Using a novel two-hybrid screen for rapamycin-dependent TOR-binding proteins, we identified the C. neoformans FKBP12 homolog, encoded by the FRR1 gene. Disruption of the FKBP12 gene conferred rapamycin and FK506 resistance but had no effect on growth, differentiation, or virulence of C. neoformans . Two spontaneous mutations that confer rapamycin resistance alter conserved residues on TOR1 or FKBP12 that are required for FKBP12-rapamycin-TOR1 interactions or FKBP12 stability. Two other spontaneous mutations result from insertion of novel DNA sequences into the FKBP12 gene. Our observations reveal that the antifungal activities of rapamycin and FK506 are mediated via FKBP12 and TOR homologs and that a high proportion of spontaneous mutants in C. neoformans result from insertion of novel DNA sequences, and they suggest that nonimmunosuppressive rapamycin analogs have potential as antifungal agents.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3