Alteration of location of dimer linkage sequence in retroviral RNA: little effect on replication or homologous recombination

Author:

Jones J S1,Allan R W1,Temin H M1

Affiliation:

1. McArdle Laboratory for Cancer Research, University of Wisconsin, Madison 53706.

Abstract

Retrovirus particles contain a dimer of retroviral genomic RNA. A defined region of the retrovirus genome has previously been shown to be important for both dimerization and encapsidation. To study the importance of the position of this encapsidation and dimerization signal for retroviral replication and homologous recombination, we used a previously described spleen necrosis virus-based helper cell system. This system allows retroviral vectors with multiple genetic markers to be studied after a single cycle of retroviral replication. The sequence responsible for dimerization, the encapsidation/dimer linkage sequence (E/DLS), was moved from its normal location near the 5' end of the retroviral genome to a location near the 3' end of the genome. We characterized four pairs of retroviral vectors: (i) with both E/DLSs at the 5' ends of the genomes, (ii) with both E/DLSs at the 3' ends of the genomes, and (iii) two with one E/DLS at the 5' end of the genome and one at the 3' end of the genome. We found that moving the E/DLS to the 3' end of the genome resulted in at most an approximately factor of 5 reduction in virus titer in a single cycle of retroviral replication. Furthermore, we found no changes that were attributable to the alteration of the position of the E/DLS in the minus-strand DNA primer transfers or the plus-strand DNA primer transfers, the rate of homologous recombination, or the number of internal template switches in recombinant proviruses. These results indicate that any alignment or conformation necessary for retroviral replication or recombination is not the result of the position of the E/DLS.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3