Influence of Host Phylogeographic Patterns and Incomplete Lineage Sorting on Within-Species Genetic Variability in Wigglesworthia Species, Obligate Symbionts of Tsetse Flies

Author:

Symula Rebecca E.1,Marpuri Ian1,Bjornson Robert D.2,Okedi Loyce3,Beadell Jon1,Alam Uzma4,Aksoy Serap4,Caccone Adalgisa1

Affiliation:

1. Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem St., New Haven, Connecticut

2. Department of Computer Science and W. M. Keck Biotechnology Resource Laboratory, Yale University, New Haven, Connecticut

3. National Livestock Resources Research Institute, Tororo, Uganda

4. Division of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, Connecticut

Abstract

ABSTRACT Vertical transmission of obligate symbionts generates a predictable evolutionary history of symbionts that reflects that of their hosts. In insects, evolutionary associations between symbionts and their hosts have been investigated primarily among species, leaving population-level processes largely unknown. In this study, we investigated the tsetse (Diptera: Glossinidae) bacterial symbiont, Wigglesworthia glossinidia , to determine whether observed codiversification of symbiont and tsetse host species extends to a single host species ( Glossina fuscipes fuscipes ) in Uganda. To explore symbiont genetic variation in G. f. fuscipes populations, we screened two variable loci ( lon and lepA ) from the Wigglesworthia glossinidia bacterium in the host species Glossina fuscipes fuscipes ( W. g. fuscipes ) and examined phylogeographic and demographic characteristics in multiple host populations. Symbiont genetic variation was apparent within and among populations. We identified two distinct symbiont lineages, in northern and southern Uganda. Incongruence length difference (ILD) tests indicated that the two lineages corresponded exactly to northern and southern G. f. fuscipes mitochondrial DNA (mtDNA) haplogroups ( P = 1.0). Analysis of molecular variance (AMOVA) confirmed that most variation was partitioned between the northern and southern lineages defined by host mtDNA (85.44%). However, ILD tests rejected finer-scale congruence within the northern and southern populations ( P = 0.009). This incongruence was potentially due to incomplete lineage sorting that resulted in novel combinations of symbiont genetic variants and host background. Identifying these novel combinations may have public health significance, since tsetse is the sole vector of sleeping sickness and Wigglesworthia is known to influence host vector competence. Thus, understanding the adaptive value of these host-symbiont combinations may afford opportunities to develop vector control methods.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3