Conserved Fungal Genes as Potential Targets for Broad-Spectrum Antifungal Drug Discovery
-
Published:2006-04
Issue:4
Volume:5
Page:638-649
-
ISSN:1535-9778
-
Container-title:Eukaryotic Cell
-
language:en
-
Short-container-title:Eukaryot Cell
Author:
Liu Mengping1, Healy Matthew D.2, Dougherty Brian A.2, Esposito Kim M.3, Maurice Trina C.1, Mazzucco Charles E.1, Bruccoleri Robert E.2, Davison Daniel B.2, Frosco Marybeth1, Barrett John F.1, Wang Ying-Kai1
Affiliation:
1. Departments of Infectious Diseases 2. Applied Genomics 3. Lead Discovery, Bristol-Myers Squibb Company Pharmaceutical Research Institute, 5 Research Parkway, Wallingford, Connecticut 06492
Abstract
ABSTRACT
The discovery of novel classes of antifungal drugs depends to a certain extent on the identification of new, unexplored targets that are essential for growth of fungal pathogens. Likewise, the broad-spectrum capacity of future antifungals requires the target gene(s) to be conserved among key fungal pathogens. Using a genome comparison (or concordance) tool, we identified 240 conserved genes as candidates for potential antifungal targets in 10 fungal genomes. To facilitate the identification of essential genes in
Candida albicans
, we developed a repressible
C. albicans MET3
(Ca
MET3
) promoter system capable of evaluating gene essentiality on a genome-wide scale. The Ca
MET3
promoter was found to be highly amenable to controlled gene expression, a prerequisite for use in target-based whole-cell screening. When the expression of the known antifungal target
C. albicans ERG1
was reduced via down-regulation of the Ca
MET3
promoter, the Ca
ERG1
conditional mutant strain became hypersensitive, specifically to its inhibitor, terbinafine. Furthermore, parallel screening against a small compound library using the Ca
ERG1
conditional mutant under normal and repressed conditions uncovered several hypersensitive compound hits. This work therefore demonstrates a streamlined process for proceeding from selection and validation of candidate antifungal targets to screening for specific inhibitors.
Publisher
American Society for Microbiology
Subject
Molecular Biology,General Medicine,Microbiology
Reference56 articles.
1. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs 2. Arikan, S., and J. H. Rex. 2002. New agents for the treatment of systemic fungal infections—current status. Exp. Opin. Emerg. Drugs7:3-32. 3. Backen, A. C., I. D. Broadbent, R. W. Fetherston, J. D. Rosamond, N. F. Schnell, and M. J. Stark. 2000. Evaluation of the CaMAL2 promoter for regulated expression of genes in Candida albicans. Yeast16:1121-1129. 4. Badger, J. H., and G. J. Olsen. 1999. CRITICA: coding region identification tool invoking comparative analysis. Mol. Biol. Evol.16:512-524. 5. Braun, B. R., M. van het Hoog, C. d'Enfert, M. Martchenko, J. Dungan, A. Kuo, D. O. Inglis, M. A. Uhl, H. Hogues, M. Berriman, M. Lorenz, A. Levitin, U. Oberholzer, C. Bachewich, D. Harcus, A. Marcil, D. Dignard, T. Iouk, R. Zito, L. Frangeul, F. Tekaia, K. Rutherford, E. Wang, C. A. Munro, S. Bates, N. A. Gow, L. L. Hoyer, G. Köhler, J. Morschhäuser, G. Newport, S. Znaidi, M. Raymond, B. Turcotte, G. Sherlock, M. Costanzo, J. Ihmels, J. Berman, D. Sanglard, N. Agabian, A. P. Mitchell, A. D. Johnson, M. Whiteway, and A. Nantel. 2005. A human-curated annotation of the Candida albicans genome. PLOS Genet.1:e1.
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|