Early meiotic transcripts are highly unstable in Saccharomyces cerevisiae

Author:

Surosky R T1,Esposito R E1

Affiliation:

1. Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637.

Abstract

Meiosis in Saccharomyces cerevisiae requires the induction of a large number of genes whose mRNAs accumulate at specific times during meiotic development. This study addresses the role of mRNA stability in the regulation of meiosis-specific gene expression. Evidence is provided below demonstrating that the levels of meiotic mRNAs are exquisitely regulated by both transcriptional control and RNA turnover. The data show that (i) early meiotic transcripts are extremely unstable when expressed during either vegetative growth or sporulation, and (ii) transcriptional induction, rather than RNA turnover, is the predominant mechanism responsible for meiosis-specific transcript accumulation. When genes encoding the early meiotic mRNAs are fused to other promoters and expressed during vegetative growth, their mRNA half-lives, of under 3 min, are among the shortest known in S. cerevisiae. Since these mRNAs are only twofold more stable when expressed during sporulation, we conclude that developmental regulation of mRNA turnover can be eliminated as a major contributor to meiosis-specific mRNA accumulation. The rapid degradation of the early mRNAs at all stages of the yeast life cycle, however, suggests that a specific RNA degradation system operates to maintain very low basal levels of these transcripts during vegetative growth and after their transient transcriptional induction in meiosis. Studies to identify specific cis-acting elements required for the rapid degradation of early meiotic transcripts support this idea. A series of deletion derivatives of one early meiosis-specific gene, SPO13, indicate that its mRNA contains determinants, located within the coding region, which contribute to the high instability of this transcript. Translation is another component of the degradation mechanism since frameshift and nonsense mutations within the SPO13 mRNA stabilize the transcript.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3