Affiliation:
1. School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
2. Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, South Korea
3. CJ CheilJedang, Life Ingredient & Material Research Institute, Suwon, South Korea
4. Food Biotechnology, Silla University, Busan, South Korea
Abstract
ABSTRACT
There is currently little information on nonphosphorylated sugar epimerases, which are of potential interest for producing rare sugars. We found a gene (the TM0416 gene) encoding a putative
d
-tagatose-3-epimerase-related protein from the hyperthermophilic bacterium
Thermotoga maritima
. We overexpressed the TM0416 gene in
Escherichia coli
and purified the resulting recombinant protein for detailed characterization. Amino acid sequence alignment and a structural similarity search revealed that TM0416 is a putative nonphosphorylated sugar epimerase. The recombinant enzyme exhibited maximal C-3 epimerization of
l
-ribulose to
l
-xylulose at ∼80°C and pH 7 in the presence of 1 mM Mn
2+
. In addition, this enzyme showed unusually high activity for the epimerization of
d
-tagatose to
d
-sorbose, with a conversion yield of 20% after 6 h at 80°C. Remarkably, the enzyme catalyzed the isomerization of
d
-erythrose or
d
-threose to
d
-erythrulose significantly, with conversion yields of 71% and 54.5%, respectively, after 6 h at 80°C at pH 7. To further investigate the substrate specificity of TM0416, we determined its crystal structures in complex with divalent metal ions and
l
-erythrulose at resolutions of 1.5 and 1.6 Å. Detailed inspection of the structural features and biochemical data clearly demonstrated that this metalloenzyme, with a freely accessible substrate-binding site and neighboring hydrophobic residues, exhibits different and promiscuous substrate preferences, compared with its mesophilic counterparts. Therefore, this study suggests that TM0416 can be functionally classified as a novel type of
l
-ribulose 3-epimerase (R3E) with
d
-erythrose isomerase activity.
IMPORTANCE
Rare sugars, which occur naturally in small amounts, have attracted considerable attention in the food and drug industries. However, there is little information on nonphosphorylated sugar epimerases, which might potentially be applied for the production of rare sugars. This study describes the characterization and functional annotation of a putative nonphosphorylated sugar 3-epimerase from a hyperthermophilic bacterium. Furthermore, we determined its crystal structures in complex with divalent metal ions and
l
-erythrulose, highlighting its metal-dependent, bifunctional, sugar-isomerizing activity. This hyperthermophilic R3E exhibited
d
-erythrose/
d
-threose isomerase activity, with structural features near the substrate-binding site distinct from those of its mesophilic counterparts. Moreover, this metalloenzyme showed unusually high activity for the epimerization of
d
-tagatose to
d
-sorbose at 70°C. Therefore, TM0416 can be functionally classified as a novel type of promiscuous R3E with a potential for the production of rare sugars for the food and pharmaceutical industries.
Funder
The National Research Foundation of Korea, the Ministry of Science, ICT, and Future Planning
The National Research Foundation of Korea, the Ministry of Science, ICT, Future Planning
the Strategic Initiative for Microbiomes in Agriculture and Food, the Ministry of Agriculture, Food, and Rural Affairs
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Reference62 articles.
1. Efficient conversion of allitol to d-psicose by Bacillus pallidus Y25
2. Biosynthesis of rare hexoses using microorganisms and related enzymes
3. Sweet choices: sugar replacements for foods and beverages;Nabors LO;Food Technol,2002
4. Zehner
LR
. November1988. d -Tagatose as a low-calorie carbohydrate sweetener and bulking agent. US patent 4 786 722.
5. Efforts to develop methods forin vivoevaluation of the native β-cell mass
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献