Author:
Nagler Katja,Setlow Peter,Li Yong-Qing,Moeller Ralf
Abstract
ABSTRACTThe effect of high NaCl concentrations on nutrient and nonnutrient germination ofBacillus subtilisspores was systematically investigated. Under all conditions, increasing NaCl concentrations caused increasing, albeit reversible, inhibition of germination. High salinity delayed and increased the heterogeneity of germination initiation, slowed the germination kinetics of individual spores and the whole spore population, and decreased the overall germination efficiency, as observed by a variety of different analytical techniques. Germination triggered by nutrients which interact with different germinant receptors (GRs) was affected differently by NaCl, suggesting that GRs are targets of NaCl inhibition. However, NaCl also inhibited GR-independent germination, suggesting that there is at least one additional target for NaCl inhibition. Strikingly, a portion of the spore population could initiate germination withl-alanine even at NaCl concentrations near saturation (∼5.4 M), suggesting that spores lack a salt-sensing system preventing them from germinating in a hostile high-salinity environment. Spores that initiated germination at very high NaCl concentrations excreted their large depot of Ca2+-pyridine-2,6-dicarboxylic acid and lost their heat resistance, but they remained in a phase-gray state in the phase-contrast microscope, suggesting that there was incomplete germination. However, some metabolic activity could be detected at up to 4.8 M NaCl. Overall, high salinity seems to exert complex effects on spore germination and outgrowth whose detailed elucidation in future investigations could give valuable insights on these processes in general.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献