Changes to Its Peptidoglycan-Remodeling Enzyme Repertoire Modulate β-Lactam Resistance in Pseudomonas aeruginosa

Author:

Cavallari Joseph F.,Lamers Ryan P.,Scheurwater Edie M.,Matos Andrea L.,Burrows Lori L.

Abstract

ABSTRACTPseudomonas aeruginosais a leading cause of hospital-acquired infections and is resistant to many antibiotics. Among its primary mechanisms of resistance is expression of a chromosomally encoded AmpC β-lactamase that inactivates β-lactams. The mechanisms leading to AmpC expression inP. aeruginosaremain incompletely understood but are intricately linked to cell wall metabolism. To better understand the roles of peptidoglycan-active enzymes in AmpC expression—and consequent β-lactam resistance—a phenotypic screen ofP. aeruginosamutants lacking such enzymes was performed. Mutants lacking one of four lytic transglycosylases (LTs) or the nonessential penicillin-binding protein PBP4 (dacB) had altered β-lactam resistance.mltFandsltmutants with reduced β-lactam resistance were designated WIMPs (wall-impaired mutant phenotypes), while highly resistantdacB,sltB1, andmltBmutants were designated HARMs (high-level AmpC resistant mutants). Double mutants lackingdacBandsltB1had extreme piperacillin resistance (>256 μg/ml) compared to either of the single knockouts (64 μg/ml for adacBmutant and 12 μg/ml for ansltB1mutant). Inactivation ofampCreverted these mutants to wild-type susceptibility, confirming that AmpC expression underlies resistance.dacBmutants had constitutively elevated AmpC expression, but the LT mutants had wild-type levels of AmpC in the absence of antibiotic exposure. These data suggest that there are at least two different pathways leading to AmpC expression inP. aeruginosaand that their simultaneous activation leads to extreme β-lactam resistance.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3