Effect of High-Pressure-Induced Ice I-to-Ice III Phase Transitions on Inactivation of Listeria innocua in Frozen Suspension

Author:

Luscher C.1,Balasa A.1,Fröhling A.1,Ananta E.1,Knorr D.1

Affiliation:

1. Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin, D-14195 Berlin, Germany

Abstract

ABSTRACT The inactivation of Listeria innocua BGA 3532 at subzero temperatures and pressures up to 400 MPa in buffer solution was studied to examine the impact of high-pressure treatments on bacteria in frozen matrices. The state of aggregation of water was taken into account. The inactivation was progressing rapidly during pressure holding under liquid conditions, whereas in the ice phases, extended pressure holding times had comparatively little effect. The transient phase change of ice I to other ice polymorphs (ice II or ice III) during pressure cycles above 200 MPa resulted in an inactivation of about 3 log cycles, probably due to the mechanical stress associated with the phase transition. This effect was independent of the applied pressure holding time. Flow cytometric analyses supported the assumption of different mechanisms of inactivation of L. innocua in the liquid phase and ice I (large fraction of sublethally damaged cells due to pressure inactivation) in contrast to cells subjected to ice I-to-ice III phase transitions (complete inactivation due to cell rupture). Possible applications of high-pressure-induced phase transitions include cell disintegration for the recovery of intracellular components and inactivation of microorganisms in frozen food.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3