Affiliation:
1. Division of Cellular and Molecular Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
Abstract
We show here that NFAT1 is rapidly activated, then slowly deactivated, by stimulation of T cells through their antigen receptor. Within minutes of T-cell receptor stimulation, NFAT1 is dephosphorylated, translocates from the cytoplasm into the nucleus, and shows an increase in its ability to bind to DNA. These changes are dependent on calcium mobilization and calcineurin activation, since they are also elicited by ionomycin and are blocked by the immunosuppressive drug cyclosporin A. After several hours of T-cell receptor stimulation, the majority of the NFAT1 in the cell reverts to its original phosphorylated form, reappears in the cytoplasm, and again displays a low affinity for DNA. Deactivation of NFAT1 is facilitated by phorbol 12-myristate 13-acetate and inhibitors of capacitative calcium entry and most likely reflects the slow return of intracellular free calcium concentrations towards resting levels. Our results suggest that calcineurin-dependent signalling pathways mediate the early activation of NFAT1, while phorbol 12-myristate 13-acetate-dependent feedback pathways contribute to the late deactivation. Persistent NFAT-dependent cytokine gene transcription in activated T cells may be mediated by other NFAT family proteins in addition to NFAT1 during the immune response.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
97 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献