Elevated Expression of GlpT and UhpT via FNR Activation Contributes to Increased Fosfomycin Susceptibility in Escherichia coli under Anaerobic Conditions

Author:

Kurabayashi Kumiko,Tanimoto Koichi,Fueki Shinobu,Tomita Haruyoshi,Hirakawa Hidetada

Abstract

ABSTRACTBecause a shortage of new antimicrobial agents is a critical issue at present, and with the spread of multidrug-resistant (MDR) pathogens, the use of fosfomycin to treat infections is being revisited as a “last-resort option.” This drug offers a particular benefit in that it is more effective against bacteria growing under oxygen-limited conditions, unlike other commonly used antimicrobials, such as fluoroquinolones and aminoglycosides. In this study, we showed thatEscherichia colistrains, including enterohemorrhagicE. coli(EHEC), were more susceptible to fosfomycin when grown anaerobically than when grown aerobically, and we investigated how the activity of this drug was enhanced during anaerobic growth ofE. coli. Our quantitative PCR analysis and a transport assay showed thatE. colicells grown under anaerobic conditions had higher levels of expression ofglpTanduhpT, encoding proteins that transport fosfomycin into cells with their native substrates, i.e., glycerol-3-phosphate and glucose-6-phosphate, and led to increased intracellular accumulation of the drug. Elevation of expression of these genes during anaerobic growth requires FNR, a global transcriptional regulator that is activated under anaerobic conditions. Purified FNR bound to DNA fragments from regions upstream ofglpTanduhpT, suggesting that it is an activator of expression ofglpTanduhpTduring anaerobic growth. We concluded that the increased antibacterial activity of fosfomycin towardE. coliunder anaerobic conditions can be attributed to elevated expression of GlpT and UhpT following activation of FNR, leading to increased uptake of the drug.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3