Diverse Cytomegalovirus UL27 Mutations Adapt to Loss of Viral UL97 Kinase Activity under Maribavir

Author:

Chou Sunwen1

Affiliation:

1. Division of Infectious Diseases, Oregon Health and Science University, and Department of Veterans Affairs Medical Center, Portland, Oregon

Abstract

ABSTRACT In vitro resistance to maribavir (MBV), a cytomegalovirus UL97 kinase inhibitor currently in clinical trials, is known to result from viral UL97 mutations that confer moderate to high-level resistance and UL27 mutations that confer low-level resistance. To add to the four reported UL27 mutations, cytomegalovirus isolates or strains were propagated under MBV. Four clinical isolates evolved UL27 mutations, which were first detected after 8 to 30 passages under drug selection. In three separate experiments, laboratory strain T2294, which contained an exonuclease mutation, developed UL27 mutations at 10 to 12 passages under MBV. Most of these isolates and strains also developed a UL97 mutation, commonly T409M, before or after the appearance of the UL27 mutation. The passage of two laboratory strains genetically defective in UL97, in the absence of MBV, likewise resulted in UL27 mutations. The nine UL27 mutations observed included multiple instances of point, stop, and frameshift mutations, which were individually transferred to a reference CMV strain and which were shown to confer two- to threefold increases in MBV inhibitory concentrations. In contrast, seven common UL27 amino acid changes found in baseline clinical isolates conferred no MBV resistance. The mutants with UL27 mutations had slightly attenuated growth. The frequent mutation of UL27 suggests that its normal expression is mildly disadvantageous to the virus in the absence of UL97 kinase activity, whether the latter results from MBV inhibition or a genetic defect. Although the function of UL27 is unknown, it does not appear to be a direct antiviral target for MBV.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3