Use of adhesion-defective mutants of Staphylococcus aureus to define the role of specific plasma proteins in promoting bacterial adhesion to canine arteriovenous shunts

Author:

Vaudaux P E1,François P1,Proctor R A1,McDevitt D1,Foster T J1,Albrecht R M1,Lew D P1,Wabers H1,Cooper S L1

Affiliation:

1. Division of Infectious Diseases, University Hospital, University of Geneva, Switzerland.

Abstract

We used an ex vivo canine arteriovenous shunt model, previously developed to study plasma protein adsorption and thrombogenesis on polymeric biomaterials, to define the role of host proteins in promoting adhesion of Staphylococcus aureus. Either polyethylene or polyvinyl chloride tubings were exposed to canine blood for 5, 15, or 60 min at a flow rate of 300 ml/min and then were flushed in phosphate-buffered saline (PBS), cut into 1.5-cm segments, and stored at -70 degrees C. After thawing, each segment was preincubated in 0.5% albumin in PBS to prevent nonspecific staphylococcal attachment to surfaces that were not exposed to blood. Each segment was then incubated with 4 x 10(6) CFU of [3H]thymidine-labelled S. aureus per ml for 60 min at 37 degrees C in an in vitro adhesion assay. Two site-specific mutants of S. aureus were tested: one specifically defective in adhesion to surface-bound fibronectin (FnAd-def) and the other defective in adhesion to fibrinogen (FgAD-def) [corrected]. Compared with their respective parental strains, the FgAd-def, but not the FnAd-def, mutant of S. aureus showed a strong (> 80%) decrease in attachment to ex vivo tubings. The adhesion of each strain of S. aureus onto polyethylene was consistently more than twofold higher than the adhesion onto polyvinyl chloride segments exposed to flowing blood for 5 or 15 min, but adhesion became similar to that on polyvinyl chloride after 60 min of exposure. In conclusion, the specific adhesion-defective mutants of S. aureus suggested that fibrinogen was the most active adhesion-promoting protein in a short-term blood-material interaction. The experimental approach described in this study should prove useful for screening materials thought to be resistant to protein-mediated staphylococcal adhesion and colonization.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 151 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3