Lipopolysaccharides of Actinobacillus pleuropneumoniae bind pig hemoglobin

Author:

Bélanger M1,Bégin C1,Jacques M1

Affiliation:

1. Département de pathologie et microbiologie, Faculté de Médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada.

Abstract

A previous study indicated that lipopolysaccharides (LPS) extracted from Actinobacillus pleuropneumoniae bind two low-molecular-mass proteins, of approximately 10 and 11 kDa, present in porcine respiratory tract secretions (M. Bélanger, D. Dubreuil, and M. Jacques, Infect. Immun. 62:868-873, 1994). In the present study, we determined the N-terminal amino acid sequences of these two proteins, which revealed high homology with the alpha and beta chains of pig hemoglobin. Some isolates of A. pleuropneumoniae were able to use hemoglobin from various animal species as well as other heme compounds as sole sources of iron for growth, while other isolates were unable to use them. Immunoelectron microscopy showed binding of pig hemoglobin at the surface of all A. pleuropneumoniae isolates as well as labeling of outer membrane blebs. We observed, using Western blotting (immunoblotting), that the lipid A-core region of LPS of all isolates was binding pig hemoglobin. Furthermore, lipid A obtained after acid hydrolysis of LPS extracted from A. pleuropneumoniae was able to bind pig hemoglobin and this binding was completely abolished by preincubation of lipid A with polymyxin B but was not inhibited by preincubation with glucosamines. Fatty acids constituting the lipid A of A. pleuropneumoniae, namely, dodecanoic acid, tetradecanoic acid, 3-hydroxytetradecanoic acid, hexadecanoic acid, and octadecanoic acid, were also binding pig hemoglobin. Our results indicate that LPS of all A. pleuropneumoniae isolates tested bind pig hemoglobin and that lipid A is involved in this binding. Our results also indicate that some A. pleuropneumoniae isolates are, in addition, able to use hemoglobin for growth. Binding of hemoglobin to LPS might represent an important means by which A. pleuropneumoniae acquires iron in vivo from hemoglobin released from erythrocytes lysed by the action of its hemolysins.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3