The Immunosuppressant Rapamycin Represses Human Immunodeficiency Virus Type 1 Replication

Author:

Roy Jocelyn1,Paquette Jean-Sébastien1,Fortin Jean-François1,Tremblay Michel J.1

Affiliation:

1. Centre de Recherche en Infectiologie, Hôpital CHUL, Centre Hospitalier Universitaire de Québec, and Département de Biologie Médicale, Faculté de Médecine, Université Laval, Ste-Foy, Québec, Canada G1V 4G2

Abstract

ABSTRACT The immunosuppressive macrolide rapamycin is used in humans to prevent graft rejection. This drug acts by selectively repressing the translation of proteins that are encoded by an mRNA bearing a 5′-polypyrimidine tract (e.g., ribosomal proteins, elongation factors). The human immunodeficiency virus type 1 (HIV-1) carries a polypyrimidine motif that is located within the tat exon 2. Treatment of human T lymphoid cells with rapamycin resulted in a marked diminution of HIV-1 transcription when infection was performed with luciferase reporter T-tropic and macrophage-tropic viruses. Replication of fully infectious HIV-1 particles was abolished by rapamycin treatment. The rapamycin-mediated inhibitory effect on HIV-1 production was reversed by FK506. The anti-HIV-1 effect of rapamycin was also seen in primary human cells (i.e., peripheral blood lymphocytes) from different healthy donors. Rapamycin was shown to diminish basal HIV-1 long terminal repeat gene expression, and the observed effect of rapamycin on HIV-1 replication seems to be independent of the virus-specific transactivating Tat protein. A constitutive β-actin promoter-based reporter gene vector was unaffected by rapamycin treatment. Kinetic virus infection studies and exposure to reporter viruses pseudotyped with heterologous envelope proteins (i.e., amphotropic murine leukemia virus and vesicular stomatitis virus G) suggested that rapamycin is primarily affecting the life cycle of HIV-1 at a transcriptional level. Northern blot analysis confirmed that this compound is selectively targeting HIV-1 mRNA synthesis.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3