Ribosomal Alterations Controlling Alkaline Phosphatase Isozymes in Escherichia coli

Author:

Piggot P. J.1,Sklar M. D.1,Gorini L.1

Affiliation:

1. Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115

Abstract

Different patterns of isozymes were obtained by starch-gel electrophoresis of alkaline phosphatase from Escherichia coli strains differing only by strA or ram mutations, or both, in the 30 S ribosomal subunit. The isozyme spread was reduced in strA and increased in ram strains; this strictly parallels the restriction and enhancement of translational ambiguity produced by these mutations. Streptomycin present during growth had an effect similar to ram on both isozymes and ambiguity. The three isozymes analyzed have different N-terminal residues: aspartic acid, valine, and threonine. Different patterns of isozymes were also obtained in a wild-type strain through the specific action of exogenous arginine. A link between the mechanism of the effect of arginine and that of the ribosome is not obvious. The possibility is discussed that in both cases, although by different mechanisms, N-terminals are formed with different sensitivity to limited degradative attack.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3