Control of the Pathway of γ-Aminobutyrate Breakdown in Escherichia coli K-12

Author:

Dover Shabtay1,Halpern Yeheskel S.1

Affiliation:

1. Department of Molecular Biology, Institute of Microbiology, Hebrew University—Hadassah Medical School, Jerusalem, Israel

Abstract

Mutants of Escherichia coli K-12 isolated for their ability to utilize γ-aminobutyrate (GABA) as the sole source of nitrogen exhibit a concomitant several-fold increase in the activities of γ-aminobutyrate-α-ketoglutarate transaminase (GSST, EC 2.6.1.19) and succinic semialdehyde dehydrogenase (SSDH, EC 1.2.1.16). The increase in rate of enzymatic activity is not accompanied by any changes in the affinities of the mutant enzymes for their respective substrates. The synthesis of the two enzymes is highly coordinate under a great variety of conditions, in spite of the wide range of activities observed. In cultures grown in minimal media with ammonium salts as the source of nitrogen, both GSST and SSDH are severely repressed by glucose. Substitution of ammonia with GABA, glutamate, or aspartate greatly reduces the effect of glucose on the synthesis of the GABA utilization enzymes. This escape from catabolite repression is specific for GSST and SSDH and does not involve other enzymes sensitive to catabolite repression (e.g., β-galactosidase, EC 3.2.1.23, and aspartase, EC 4.3.1.1).

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3