The Antimalarial Potential of 4-Quinolinecarbinolamines May Be Limited due to Neurotoxicity and Cross-Resistance in Mefloquine-Resistant Plasmodium falciparum Strains

Author:

Dow Geoffrey S.1,Koenig Michael L.2,Wolf Lesley2,Gerena Lucia1,Lopez-Sanchez Miriam1,Hudson Thomas H.1,Bhattacharjee Apurba K.1

Affiliation:

1. Divisions of Experimental Therapeutics

2. Neurosciences, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910

Abstract

ABSTRACT The clinical potential of mefloquine has been compromised by reports of adverse neurological effects. A series of 4-quinolinecarbinolamines were compared in terms of neurotoxicity and antimalarial activity in an attempt to identify replacement drugs. Neurotoxicity (MTT [thiazolyl blue reduction] assay) was assessed by exposure of cultured embryonic rat neurons to graded concentrations of the drugs for 20 min. The 50% inhibitory concentration (IC 50 ) of mefloquine was 25 μM, while those of the analogs were 19 to 200 μM. The relative (to mefloquine) therapeutic indices of the analogs were determined after using the tritiated hypoxanthine assay for assessment of the antimalarial activity of the analogs against mefloquine-sensitive (W2) and -resistant (D6 and TM91C235) Plasmodium falciparum strains. Five analogs, WR157801, WR073892, WR007930, WR007333, and WR226253, were less neurotoxic than mefloquine and exhibited higher relative therapeutic indices (RTIs) against TM91C235 (2.9 to 12.2). Conventional quinoline antimalarials were generally less neurotoxic (IC 50 s of 400, 600, and 900 for amodiaquine, chloroquine, and quinine) or had higher RTIs (e.g., 30 for halofantrine against TM91C235). The neurotoxicity data for the 4-quinolinecarbinolamines were used to develop a three-dimensional (3D), function-based pharmacophore. The crucial molecular features correlated with neurotoxicity were a hydrogen bond acceptor (lipid) function, an aliphatic hydrophobic function, and a ring aromatic function specifically distributed in the 3D surface of the molecule. Mapping of the 3D structures of a series of structurally diverse quinolines to the pharmacophore allowed accurate qualitative predictions of neurotoxicity (or not) to be made. Extension of this in silico screening approach may aid in the identification of less-neurotoxic quinoline analogs.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference30 articles.

1. Accelrys Inc. 2001. CATALYST version 4.6. Accelrys Inc. San Diego Calif.

2. Baudry, S., Y. T. Pham, B. Baune, S. Vidrequin, C. Crevoisier, F. Gimenez, and R. Farinotti. 1997. Stereoselective passage of mefloquine through the blood-brain barrier in the rat. J. Pharm. Pharmacol.49:1086-1090.

3. Bhattacharjee, A. K., and J. M. Karle. 1996. Molecular electronic properties of a series of 4-quinolinecarbinolamines define antimalarial activity profile. J. Med. Chem.39:4622-4629.

4. Bhattacharjee, A. K., D. E. Kyle, J. L. Vennerstrom, and W. K. Milhous. 2002. A 3D QSAR pharmacophore model and quantum chemical structure activity analysis of chloroquine (CQ)-resistance reversal. J. Chem. Inf. Comput. Sci.42:1212-1220.

5. Canfield, C. J. 1980. Antimalarial aminoalcohol alternatives to mefloquine. Acta Trop.37:232-237.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3