Positive Selection Pressure Introduces Secondary Mutations at Gag Cleavage Sites in Human Immunodeficiency Virus Type 1 Harboring Major Protease Resistance Mutations

Author:

Banke Søren1,Lillemark Marie R.1,Gerstoft Jan2,Obel Niels2,Jørgensen Louise B.1

Affiliation:

1. Virus BL-3 Laboratory, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark

2. Department of Infectious Diseases, Rigshospitalet University of Copenhagen, Copenhagen, Denmark

Abstract

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) specifically target the HIV-1 protease enzyme. Mutations in the enzyme can result in PI resistance (termed PI mutations); however, mutations in the HIV-1 gag region, the substrate for the protease enzyme, might also lead to PI resistance. We analyzed gag and pol sequence data from the following 313 HIV-1-infected patients: 160 treatment-naïve patients, 93 patients failing antiretroviral treatment that included a PI (with no major PI mutations), and 60 patients failing antiretroviral treatment that included a PI (with major PI mutations). Additional sequences from 13 patients were included for longitudinal analysis. We assessed positive selection pressure on the gag /protease region using a test for the overall influence of positive selection and a total of five tests to identify positively selected single codons. We found that positive selection pressure was the driving evolutionary force for the gag region in all three patient groups. An increase in positive selection was observed in gag cleavage site regions p7/p1/p6 only after the acquisition of major PI mutations, suggesting that amino acids in gag cleavage sites under positive selection pressure could function as compensatory mutations for major PI mutations in the protease region. Isolated gag mutations did not appear to confer PI resistance, but mutations in the gag cleavage sites could substitute for minor PI resistance mutations in the protease region.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3