Respiratory syncytial virus co-opts hypoxia-inducible factor-1α-mediated glycolysis to favor the production of infectious virus

Author:

Chen Li-Feng1ORCID,Cai Jun-Xing2,Zhang Jing-Jing2,Tang Yu-Jun2,Chen Jia-Yi2,Xiong Si2,Li Yao-Lan2,Zhang Hong1ORCID,Liu Zhong3,Li Man-Mei2ORCID

Affiliation:

1. Department of Dermatology, The First Affiliated Hospital, Jinan University , Guangzhou, Guangdong, China

2. Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou, Guangdong, China

3. Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong, China

Abstract

ABSTRACT Glycolysis, a series of oxidative reactions used to metabolize glucose and provide energy to host cells, is also required for respiratory syncytial virus (RSV) infection. However, the role of glycolysis during RSV infection and its underlying molecular mechanisms remain to be further explored. In this study, we investigated the function of hypoxia-inducible factor (HIF)-1α-mediated glycolysis in HEp-2 cells and mouse models during RSV infection. The results showed that RSV infection activated the insulin receptor (IR)-PI3K-Akt axis, upregulated the translation and activity of HIF-1α, increased the expression of glucose transporters (Glut1, Glut3, and Glut4), hexokinase (HK) 1 and 2, and platelet-type phosphofructokinase (PFKP), and promoted glucose uptake and glycolysis. In addition, mitochondrial damage induced by RSV resulted in the generation of large amounts of reactive oxygen species (ROS) in infected cells, which contributed to the stabilization and activation of HIF-1α. An energy map of the glycolytic ATP production rate (Glyco-ATP) versus the mitochondrial ATP production rate (mito-ATP) confirmed a switch from oxidative phosphorylation (OXPHOS) to glycolysis. Inhibition of IR-PI3K-Akt signaling, ROS, or HIF-1α effectively reversed the RSV-induced increase in glycolysis by blocking HIF-1α activation. Importantly, HIF-1α-mediated glycolysis provided energy for the production of progeny RSV virions. The production of infectious virions was nearly abolished after knocking down HIF-1α. PX-478, an orally active HIF-1α inhibitor, effectively inhibited RSV infection in vivo . Collectively, these results indicate the role of HIF-1α-mediated glycolysis in RSV infection and highlight HIF-1α as a potential target for anti-RSV drug development. IMPORTANCE Respiratory syncytial virus (RSV) is the leading etiological agent of lower respiratory tract illness. However, efficacious vaccines or antiviral drugs for treating RSV infections are currently not available. Indeed, RSV depends on host cells to provide energy needed to produce progeny virions. Glycolysis is a series of oxidative reactions used to metabolize glucose and provide energy to host cells. Therefore, glycolysis may be helpful for RSV infection. In this study, we show that RSV increases glycolysis by inducing the stabilization, transcription, translation, and activation of hypoxia-inducible factor (HIF)-1α in infected cells, which is important for the production of progeny RSV virions. This study contributes to understanding the molecular mechanism by which HIF-1α-mediated glycolysis controls RSV infection and reveals an effective target for the development of highly efficient anti-RSV drugs.

Funder

MOST | National Natural Science Foundation of China

GDSTC | Basic and Applied Basic Research Foundation of Guangdong Province

MOST | National Key Research and Development Program of China

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3