A Signaling-Regulated, Short-Chain Dehydrogenase of Stagonospora nodorum Regulates Asexual Development

Author:

Tan Kar-Chun1,Heazlewood Joshua L.2,Millar A. Harvey2,Thomson Gordon3,Oliver Richard P.1,Solomon Peter S.1

Affiliation:

1. Australian Centre for Necrotrophic Fungal Pathogens, SABC, Faculty of Health Sciences, Murdoch University, Murdoch 6150, Australia

2. Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley 6009, Australia

3. School of Biological Sciences and Biotechnology, Division of Science and Engineering, Murdoch University, Murdoch 6150, Australia

Abstract

ABSTRACT The fungus Stagonospora nodorum is a causal agent of leaf and glume blotch disease of wheat. It has been previously shown that inactivation of heterotrimeric G protein signaling in Stagonospora nodorum caused development defects and reduced pathogenicity [P. S. Solomon et al., Mol. Plant-Microbe Interact. 17:456-466, 2004]. In this study, we sought to identify targets of the signaling pathway that may have contributed to phenotypic defects of the signaling mutants. A comparative analysis of Stagonospora nodorum wild-type and Gα-defective mutant ( gna1 ) intracellular proteomes was performed via two-dimensional polyacrylamide gel electrophoresis. Several proteins showed significantly altered abundances when comparing the two strains. One such protein, the short-chain dehydrogenase Sch1, was 18-fold less abundant in the gna1 strain, implying that it is positively regulated by Gα signaling. Gene expression and transcriptional enhanced green fluorescent protein fusion analyses of Sch1 indicates strong expression during asexual development. Mutant strains of Stagonospora nodorum lacking Sch1 demonstrated poor growth on minimal media and exhibited a significant reduction in asexual sporulation on all growth media examined. Detailed histological experiments on sch1 pycnidia revealed that the gene is required for the differentiation of the subparietal layers of asexual pycnidia resulting in a significant reduction in both pycnidiospore size and numbers.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3