Helicobacter pylori Peptidoglycan Modifications Confer Lysozyme Resistance and Contribute to Survival in the Host

Author:

Wang Ge1,Lo Leja F.1,Forsberg Lennart S.2,Maier Robert J.1

Affiliation:

1. Department of Microbiology, University of Georgia, Athens, Georgia, USA

2. the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA

Abstract

ABSTRACT The prominent host muramidase lysozyme cleaves bacterial peptidoglycan (PG), and the enzyme is abundant in mucosal secretions. The lytic enzyme susceptibility of Gram-negative bacteria and mechanisms they use to thwart lytic enzyme activity are poorly studied. We previously characterized a Helicobacter pylori PG modification enzyme, an N-deacetylase (PgdA) involved in lysozyme resistance. In this study, another PG modification enzyme, a putative PG O-acetyltransferase (PatA), was identified. Mass spectral analysis of the purified PG demonstrated that a patA strain contained a greatly reduced amount of acetylated muropeptides, indicating a role for PatA in H. pylori PG O-acetylation. The PG modification mutant strains ( pgdA , patA , or pgdA patA ) were more susceptible to lysozyme killing than the parent, but this assay required high lysozyme levels (up to 50 mg/ml). However, addition of host lactoferrin conferred lysozyme sensitivity to H. pylori , at physiologically relevant concentrations of both host components (3 mg/ml lactoferrin plus 0.3 mg/ml lysozyme). The pgdA patA double mutant strain was far more susceptible to lysozyme/lactoferrin killing than the parent. Peptidoglycan purified from a pgdA patA mutant was five times more sensitive to lysozyme than PG from the parent strain, while PG from both single mutants displayed intermediate sensitivity. Both sensitivity assays for whole cells and for purified PGs indicated that the modifications mediated by PgdA and PatA have a synergistic effect, conferring lysozyme tolerance. In a mouse infection model, significant colonization deficiency was observed for the double mutant at 3 weeks postinoculation. The results show that PG modifications affect the survival of a Gram-negative pathogen. IMPORTANCE Pathogenic bacteria evade host antibacterial enzymes by a variety of mechanisms, which include resisting lytic enzymes abundant in the host. Enzymatic modifications to peptidoglycan (PG, the site of action of lysozyme) are a known mechanism used by Gram-positive bacteria to protect against host lysozyme attack. However, Gram-negative bacteria contain a thin layer of PG and a recalcitrant outer membrane permeability barrier to resist lysis, so molecular modifications to cell wall structure in order to combat lysis remain largely unstudied. Here we show that two Helicobacter pylori PG modification enzymes (PgdA and PatA) confer a clear protective advantage to a Gram-negative bacterium. They protect the bacterium from lytic enzyme degradation, albeit via different PG modification activities. Many pathogens are Gram negative, so some would be expected to have a similar cell wall-modifying strategy. Understanding such strategies may be useful for combating pathogen growth.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3