Probiotic Lactobacillus rhamnosus Reduces Organophosphate Pesticide Absorption and Toxicity to Drosophila melanogaster

Author:

Trinder Mark12,McDowell Tim W.3,Daisley Brendan A.12,Ali Sohrab N.4,Leong Hon S.24,Sumarah Mark W.3,Reid Gregor124

Affiliation:

1. Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, Ontario, Canada

2. Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada

3. London Research and Development Center, Agriculture and Agri-Food Canada, London, Ontario, Canada

4. Department of Surgery, St. Joseph's Health Care London, London, Ontario, Canada

Abstract

ABSTRACT Organophosphate pesticides used in agriculture can pose health risks to humans and wildlife. We hypothesized that dietary supplementation with Lactobacillus , a genus of commensal bacteria, would reduce absorption and toxicity of consumed organophosphate pesticides (parathion and chlorpyrifos [CP]). Several Lactobacillus species were screened for toleration of 100 ppm of CP or parathion in MRS broth based on 24-h growth curves. Certain Lactobacillus strains were unable to reach stationary-phase culture maxima and displayed an abnormal culture morphology in response to pesticide. Further characterization of commonly used, pesticide-tolerant and pesticide-susceptible, probiotic Lactobacillus rhamnosus strain GG (LGG) and L. rhamnosus strain GR-1 (LGR-1), respectively, revealed that both strains could significantly sequester organophosphate pesticides from solution after 24-h coincubations. This effect was independent of metabolic activity, as L. rhamnosus GG did not hydrolyze CP and no difference in organophosphate sequestration was observed between live and heat-killed strains. Furthermore, LGR-1 and LGG reduced the absorption of 100 μM parathion or CP in a Caco-2 Transwell model of the small intestine epithelium. To determine the effect of sequestration on acute toxicity, newly eclosed Drosophila melanogaster flies were exposed to food containing 10 μM CP with or without supplementation with live LGG. Supplementation with LGG simultaneously, but not with administration of CP 3 days prior (prophylactically), mitigated CP-induced mortality. In summary, the results suggest that L. rhamnosus may be useful for reducing toxic organophosphate pesticide exposure via passive binding. These findings could be transferable to clinical and livestock applications due to affordability and practical ability to supplement products with food-grade bacteria. IMPORTANCE The consequences of environmental pesticide pollution due to widespread usage in agriculture and soil leaching are becoming a major societal concern. Although the long-term effects of low-dose pesticide exposure for humans and wildlife remain largely unknown, logic suggests that these chemicals are not aligned with ecosystem health. This observation is most strongly supported by the agricultural losses associated with honeybee population declines, known as colony collapse disorder, in which pesticide usage is a likely trigger. Lactobacilli are bacteria used as beneficial microorganisms in fermented foods and have shown potentials to sequester and degrade environmental toxins. This study demonstrated that commonly used probiotic strains of lactobacilli could sequester, but not metabolize, organophosphate pesticides (parathion and chlorpyrifos). This Lactobacillus -mediated sequestration was associated with decreased intestinal absorption and insect toxicity in appropriate models. These findings hold promise for supplementing human, livestock, or apiary foods with probiotic microorganisms to reduce organophosphate pesticide exposure.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3